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THEORETICAL AND EXPERIMENTAL INVESTIGATION OF THE EFFECT OF TUNNEL WALLS

ON THE FORCES ON AN OSCILLATING AIRFOIL IN TWO-DIMENSIONAL
SUBSONIC COMPRESSIBLE FLOW ‘

By HABEY L. RUNYAN, DONALD S. WOOLSTON,and L GmurI -Y

SUMMARY

Thix reportprewu%a theorelkl and tqwrimentalirwedb
galwnof tb ei7ectof wind-tunndwa4J?8on th8airforceson an
08C174?d’i~ W@ h iWO-di7n8’Mhd SUb807tiC COmpTe88ibh3

ji’ow. A &hod of 8oluin9an integralequationwhich Tti
tha dmmuoa91Lon a winf7to the unknown loading i8 gioen, and
some compationa are nuuk between tib theore4iccdremdh and
tti experimental re.su.u8. A reeonumce cundition, which was
predicted by theory in a preminu report (NAOA Rep. 1160),
is 8houmexperim-enidy to i?xi8t. In addi.tti, appticulti of
tlu anulyez%i8 nuuikto a numberof exumplain orderto iUu8-
traie the inj?umce of wal.ladue to vamkiiom in frequeney of
08d.k#h, Mac?Jnumber,and ralw of tinti W~ to u@7
semiehord.

INTRODUCTION

In the evaluation of results obtained by measurement of
the forces on a wing in a wind tunnel, the question of the
effect of the tunnel walls mises. In the case of steady flOW
the problem has been extensively investigated and, in gen-
eral, relatively simple factors have been determined which
can be used to modify measurements of the forces on a wing
in a tunnel to correspond to free-air conditions. However,
the corresponding problem of the effect of walls on an os-
cillating airfoil has received relatively little attention, par-
ticularly in the case of compressible flow. The prwent
report concerns the wall effects in the oscillating case and
treats the problem in two-dimensional subsonic compressible
flow.

In incompressible flow, theoretical treatments of wall
effects on oscillating wings have been made by several in-
vestigators and reported in referencw 1, 2, and 3. These
investigators have shown generally that the tunnel-wall
effects are a maximum for some small values of the reduced
frequency and that the wall effects become negligible as the
reduced frequency is increased. Extension of the theoretid
treatment of the problem to include the effects of compremi-
bility of the fluid has been reported in reference 4. In this

reference, it is shown that, in addition to the large eflect
noted at low values of the reduced frequency, under certain
conditions, Iarge eifecta of the walls may be encountered at
higher valuea of the reduced frequency. These effects are
due to an acoustic resonant phenomenon which occurs when
a disturbance from the oscillating wing is reflected from the
tunnel WSUback to the wing with such a phase relationship
that it reinforces a succee&ng disturbance.

In reference 4, the problem was expressed as an integral
equation which relates the known dowmwmh distribution
over the airfoil to the udmown lift distribution. One pnr-
pose of the pre9ent report is to discuss further the integral
equation and to demonatiate a method of solving it. A
second purpose is to present some results showing wall effects
calculated by this procedure and, in some cases, to compare
the calculated results with experimental results. This phase
of the investigation is given in three parts: (1) A comparison
between analytically and experimentally determined values
for the lift and moment on a wing oscillating in pitch at
several subsonic Mach numbers; (2) am analytical study of
the effects of a variation in Mach number for a constant ratio
of tunnel height to wing semichord; and (3) an analytical
study of the effects of a variation in the ratio of tunnel height
to wing semichord. Portiona of this material have been
reported previously in reference 5 and are included in the
present report in order to provide a more extensive and
unified presentation.

As a check, the integral equation for the dowmvash on G
wing oscillating between walls in a compressible medium is
reduced to the zero-frequency condition and is given in the
appendix. The remdting expression is in aggeemeut with
steady-state redts.

The calculation procedure and the results contained in this
report are of signifkmce for such problems as the experi-
mental measurement of the forces on an oscillating airfoil,
the determination of wing-flutter characteristic in vvind
tunnels, and also in certain possible types of flutter of airfoils
in cascade.
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SYMBOLS

velocity of sound, ft/sec
coeilicitmts in series expression for

lift distribution (eq. (16)), where
n=O, 1, 29 . . .

wing semichord, ft
&splacement of wing in vertiwd

translation, ft
height of tunnel, ft
height of tunnel referred to wing

semichord
Hankel functions of the second kind
reduced-frequency parameter, bu/U
kernel of integral equation
lift distribution, lb/ft/unit span
aerodynamic lift force per unit span

due to pitch
aerodynamic lift force per unit span

due to translation
aerodynamic moment per unit span

due to pitch
aerodynamic moment per unit span

due to translation
Mach number, U/a

R~=4(z–zJY+&(nH)’, where n=l,2,3, . . .
u stream velocity in chordwise direc-

tion, ft/sec
w(z) vertical induced velocity @rpen-

dicular to chord), ft/sec
G axis of rotation measured from mid-

chord, positive rearward, based on
semichord

z#!o,’y,E Carteskm coordinates
z=k(z—q)
a angular displacement of wing in

pitch, radiams
p.,m

!2–-201——
‘– fIH

e=—cos-lz

00=—COS-’1*

fluid density, S@S/CU ft
;.= phase a@e between lift force and

position of pitching wing, deg
4., phase single between lift force and

position of translating wing, deg
4JM= phase angle between moment and

position of pitting wing, deg
d%, phase angle between moment and

position of translating wing, deg
m circular frequency of oscillation,

radians/see
‘rw circular frequency at re50nance,

radians/see

Ap
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pressure differauce between upper
and lower surface, lb/sq ft

Primed quantitie9 refer to a wing in free air.

ANALYTICAL INVESTIGA~ION

This section is comxnmedwith the development of a method
for solving the integral equation, originally derived in refer-
ence 4, which relates the downwash to the loading on an

‘ oscillating wing. The basic “integralequation and its kernd
is given by equations (1) and (2). Reduction of the kernel
is made in equations (3) to (10). Alternative series expres-
sions for the kernel which are suitable for numerical computa-
tion are given by equations (11) to (16). The loading on the
wing is given by equation (16), the downwash eq.wession by
equations (18) and (19), and finally the lift and moment
expressions by equations (2o).

TEIEINTZQRALEQUATIONANDITS KRRNRLFUNCTION

The integral equation.-The integral equation of reference
4 for the vertical velocity or downwaah of an oscillating airfoil
between plane walls may be written as

w(x)=%J1,u%)[wu4+mwzj@l&o (1)

where w(z) is the known vertical velocity (or known motion
of the wing) and L(q) is the nnlaiown lift distribution or the
local strength of a distribution of oscillatingpressuredoublef.s.
The functions within the brackets comprise the kernel func-
tion of the integral equation md dppear formally as

(2a)

The iirst function K(M, z) corresponds to the kernel for the
free-air condition as given by Possio (ref. 6). The seconcl
function K(M, z, H), contain@ the infinite summation, is
the additional part of the kernel arising from the effect
of the walls. Physically, a kernel function represents the
contribution to the ver~ical velocity at a field point duo to a
pulsating pressure doublet of unit strength located at any
other point in the field. For the particular case represented
by equations (2), the kernel function gives the vertical veloc-
ity in the plane of a wing located in the center of the tunnel.
The expression K(M, z) gives the downnwsh of a doublet in
the plane of the wing, whereaa the expression K(M, z, H)
gives the dowmvaahdue to the system of imageswhich mathem-
atically reprwents the walls.

Iteduotion of the kernel function-The integrals contained
in the expressions for the kernel function in equations (2) are
improper because they have an infinite limit and also be-
cause, at certain points, the integrands become singular.
This section is concerned with the reduction of these integrals
to a form more amenable to computation.
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By mrdcinguse of tbe fact that the Hankel functions in equations (2) satisfy the identity

there is obtained for the dowmvash
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(3)

(4)

The integrals of equation (4) that contain partial derivatives of Hankel functions can be integrated twice by parts to
obtain

J

z–r” GE a=
[J

~ Hoc’) ~
1[2+~b–@’ d~= –~ ef ‘i-%)

X—Q
H,(’) [~ J(z–a)~+F(y-nHY]–e~

-m 4(z–4J2+B’(Y-nH)’

(5)

The last integd of equation (5) maybe written in two parts
as

The first integral on the right-hand side of equation (6) will
be left temporarily in integral form and will be treated in the
following section. (See evaluation of L%following eq. (13).)

The second integral on the righbhand side of equation (6)
has not been integrated in closed form; however, in wind-
tunnel problems it can be handled conveniently by approxi-
mate.methods. (An alternative means of treating this inte-
gral, which avoids the approximation but is somewhat more
tedious, will be indicated in the discussion following eq.
14(c).) A practical assumption which is often made in the
analysis of the effect of wind-tunnel walls is that the tunnel
height is considered large compared with the wing semkhord.
With thisasmmption the argument of the Hankel function in
~quation (6) cm be written as (in the limit aa y+=O)

provided that *<1.

This approximation implies that the airfoil images, and,
particularly the closest image n= 1, are a sufficient distance
from the airfoil so that the actual distmce ~~2+@(nH)2

may be replaced by the veitical distance 13nHof the image
above the airfoil. Of course, thiz approximation does not
hold for Mach numbers close to or equal to unity. With this
approximation, the second integral of equation (6) can be
expressed as

and these equations may be used to express equation (4) as

–J
1 L@,) [K(M,z)+K(M,z,H)I b

‘(’)=$ -1
(8)

where

K(M, z,E)=~
[

—e: ~ (—I)”HO@)(&) +
n-l

() ()
- /1’ e$–1 ~ (–1)UHO(2) % +

n-l
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in which use has been made of -

Ri=[z-+ R.= ~(X–XO)’+/l?(@2

Equation (8), together ~ith the definition of equations (9)
and (10), permits the determination of the eflect of tunnel
walls on a lift distribution Z(L%)for a given dow-mvaehdMri-
bution w(z). The integral equation for the case of no tunnel
walls checks the results of Poesio (ref. 6). For the case with
walls and for the limiting steady-flow case of zero fiequenoy,
it is possible to obtain a mathematical check with some
existing results; this check is shown in the appendix.

Alternative series expressions for kemel,—Although the
form of the kernel K(M,z,H), given by equation (10), could
be used for calculation, alternative series which are more
highly convergent may be used and are given in this section.

The kernel K(M, z,~ is the sum of four infinite sties
which can be written as

@-U Z,Hj=$ (CS1+G&+GS3+C4SJ (11)

where the S’n’s denoti the indicated infinite summations of
equation (10) and the Cn’=the respective multipliers.

Series S’l and Sa of equation (11) may be put in a more
rapidly convergent form according to Infeld, Smith, and
@hien (ref. 7). When the variables p and e are infioduced,
-where

and

+!!

the series SI and S, can be written as

s+j (–1)”Ho@yJ’LRJ

e-r.@n-ly-4fP

~(2n–1)’–4@ 1*Ho@J (2wp)

and

s,=fl~ (–1)” Ho@)
(%H)

(12)

=fl>l(-l)a Ho@)(finp)

(13)
where Euler’s constant 7=0.577215.

Series S3 may be evaluated by utilizing the expression for
SI (eq. (12)) ‘and integrating ‘the res&ing ~ression to
obtain

SF–-.$ log* g+

k//P‘i 1~4(2n+l)’-4@

(14b)

(14C)

It is of interest to note that seriesS3 may be employed in
an alternative means of I integrating equation (7). For
application to wind-tunnel problems, where the ratio of
tunnel height to wing semichord is small, or in application
to csscade problems, the approximation employed in integrat-
ing equation (7) becomes less valid. It is possible to avoid
the use of the approximation by writing the integral of
equation (7) in a form which is identical to that of equations
(14a) mid (14b) with the exception of the upper limit. The
integral containing the Hankel function can be evaluated
by employing the tables of Schwarz (ref. 8). The second
integral, containing only an exponential term, can be in-
tegrated in closed form, as tias done to obtain equation (14c).

Series S, maybe evaluated in a direct manner by employ-
ing tablea of the Hankel function and by using for large
valuea of the argument the approximation

(16)

With the aid of seriesSl, S,, S,, and S4,the kernel K(M,z,~
may be evaluated.

MM!HOD OF SOLUTION

A method of using equation (8) to determine the aero-
dynamic forces on a wing oscillating in the presence of plane
wtdls is now discussed. The method under consideration is
one of” collocation similar to that used by Possio (ref. 6)
and Frazer (ref. 9) for the case of no walls, The approach
involves the assumption of an appropriate series expression
for the lift distribution, substitution of this series in the
integral equation for the dowmvash, and calculation of the
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dowmvash at arbitrarily selected points on the chord (con-
trol points). Thus equation (8) is reduced to a set of simul-
taneous equations, the unknowns of -whichare the coefficients
of the assumed expression for the loading.

Expression for the loading ,—The expression which is
assumed for the lift distribution is a trigonometric series
expansion which satisfies the Kutta condition at the trailing
edge and which has the proper type of singularity at the
leding edge. This expression is ‘

where Q= —ccs 00 and the A*’s are unknown coefficients

to be determined in accordance with the dow-mvash w(x),
which is known from the motion of the wing. It is desi.r-
~ble to rewrite equation (8) in terms of the variable 00
as follows:

W@)=uk [Jo=u90)K(M,z)sineodBo+JorL(eo)K(M,zjH)shood90]

(17)

The first integral on the righkhand side of equation (17)
is the integral expression fit derived by Possio (ref. 6) for
the condition of no vmlls. Its solution has been treated by
several investigators (see, for example, ref. 9) and will not
be discussed herein. It can be expressed entirely in temM
of the unknown coefficients A%of equation (16). The sec-
ond integral of equation (17) may be evaluated by the use
of equations (12), (13), (14), and (15).

Peterxnination of the aerodynamic forces.—The integrals
of equation (17) are determined for a selected number of
control points and equated to the expression for the dowm-
Wash, The expression relating the dowmvash to the motion
of o wing translating (h) and pitching (~) about an axis
located at z=is

W@=h+uCY+b(x–xJCi (18)

or, with the assumption of harmonic motion,

(19)

J!lquation (19) is used to calculate w(o) for va!lues of z ap-
propriate to each of the selected control points. A set of
Simultaneous equations can then be written, the number of
which corresponds to the number of contiol points employed
md (conveniently) to the number of terms retained in the
series for .L(OO). The udmown coefficients may now be
determined by solving these simultaneous equations. The
total lift and moment about the midchord me given in terms
Of the coefficients Amthrough the relations

iia+4A’)
%=W+A’)}

(20)

Effect of the number of control points considered.-h
investigation was made of the number of terms of the seriesfor
the lift distribution (eq. (16)) and thus of the number of
control points required to obtain satisfactory accuracy.
Calculations were performed for a particular case by in-
creasing the number of control points and the number of
terms of the loading series until the solutions were in reason-
able agreement. For the case considered, three terms of
the seri~ for the lift and three control points at the quarter-,
hilf-, and three-quartar-chord positions gave satisfactory
results. The consideration of two additional contiol points
at the leading and trailing edges, together with two addi-
tional terms of the lift series, made no .sigMcant change in
the results. For high values of the reduced-frequency
parameter k, the use of additional control points might be
necessary.

The procedure just discussed involves consideration of a
continuous distribution of pressure doublets over the chord.
Calculations requiring much less computing can be made by
considering the chordwise loading to be concentrated in a
single doublet located at the quarter chord and by satisfying
the dowmvash at the threequarter chord. In the case of
the lift, this approach has been found to give fairly good
agreement with the results of the more elaborate calcul-
ationsexcept in the vicinity of the resonant frequency.

THE ANALYTICALLYINDICATZDIt= ONANCEPHENOMENON

!l!wo-dimensional tumel.-By examination of equations

(12) and (13), it maybe seen that-the seriesS, and S, become
id.nite when r

4@= (2n–l)z
or where

WE
—=~f?(2n-1) (n=l,2,3, . . .)
a (21)

At these critical values of the frequency parameter, the

expression for the kernel K(M,z,H) (eq. (11)) becomes
infinite for all values of z. Physically, this condition
represents a resommce in the tunnel involving a transveme
oscillation of the moving air between the -walls.

The fundamental or smallest critical values of @/a
corresponding to n= 1 in equation (21) are shown plotted as
functions of Mach number M in figure 1. Equation (21)
and figure 1 show that finite values of the critical frequency
exist for the condition M= O, U= O, and a # ~. These
conditions correspond to a compressible fluid at zero velocity
in the tunnel. As the Mach number is increased, the
exitical-frequency parameter decreases rapidly and becomes
zero at a Mach number of unity.

As indicated by equation (l), the product of the lift and
the kernel function must remain equal to the vertical
velocity over the wing; this velociQ- is deii.nedby the motion
of the wing and remains finite. The product of the lift and
the kernel function can remain finite only if the lift ap-
proached zero as the kernel becomes iniin.ite. This condition
in the tunnel is analogous to the well-lmown case of a simple
undamped-spring-mass system for which, at the resonant
frequency, theory predicts an intinite deflection of the mass
occurring even with a forcing function of small amplitude.
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Cirmlar tunnel,-A resonance can also be demonstrated for
the infinite circular tunnel. The nature of the boundary-
value problem, for this case, makes it possible to separate
variablca; therefore, the governing partial-differential equa-
tion can be reduced-to B&sel’s eq~a~ion.
ref. 10.) The resonant frequencies are
roots of the equation

()coD
‘J m ‘o

(n=O, 1,2,

(See, for inst~ce,
then found as the

. . .)

or
WD
~=Pd

where J. represents the Bessel function of the iirst kind, D
is the tunnel diameter, and P. is the root of the equation

JJ(pn)=0

Values for p. for the fit seved modes are pm=l.84, 3.05,
and 4.17. Note that, for a circular tunnel having a diameter
equal to the height of a @ane tunnel, the fundamental
frequency is 3.68/r= 1.17 higher than resonant frequency
in the plane tunnel discussed in this report.

EXPERIMENTAL INVESTIGATION

WINDTUNNEL

The experimental part of the investigation of the effect
of tunnel walls on the forces acting on an oscillating airfoil
was conducted in the Langley 2- by 4-foot flutter research
tunnel. For these tests, a rectangular twt section having
dimensions of 2 feet by 3.8 feet was used. This tunnel is of
the closed-throat, single-return type and employs either
air or Freon-12 as a testing medium at prwsures from 1
atmosphere down to about % atmosphere.

It has been shown previously that the resonant frequency
varies directly as the speed of sound. Inasmuch as l?reon-12
has a speed of sound equal to about on~half that of air, the
experiments to be discussed were conducted in Freon-12
so that the resonant frequency could be surveyed within
the frequency limitations of the equipment.

MODELAND OSCULATINGMECHANISM

I?igure 2 is a schematic drawing of the test section with

tho model and oscillating mechanism installed. The model

had a chord of 1 foot and an NACA 65-010 airfoil section;
it completely spanned the 2-foot dimension of the test
section. The gaps between the model and the tunnel wall
were sealed by end plates which rotated with the model.
The model, driven symmetrically from both ends, was
oscillated in pitch about the midchord by a direct-drive
eccentric-cam system powered by an induction motor with
variable frequency supply.

INSTRUMENTATION

The lift and moment on the wing were obtained by
electrical integration of the outputs of 12 model 49-TP

——-—
*. __.”X=- ~ ‘

+- Driveoiurrm

I Lmerrmtm1 ‘ ,[

/
L-/ Eumntriccum

L------ .–. --—. — .-!2 . . . . ----- .—— L-87584————

l?munD 2.-Schematic drawing of test seotion with model and oscil-
lating mechanism installed.

NACA miniature electrical pressure gages. The pressure
gages, which are described in cotiderable detail in reference
11, were located at the center of the span at 2.5, 5, 10, 15,
20, 30,40, 50, 60, 70, 80, and 90 percent of the chord. Each
gage was arranged to indicate the differenm in pressure
between orifkes on the upper and lower surfaces. Electrical
integration techniques used in these experiments are dis-
cussed in reference 12. The so-called square-wave method
of weighting waa used; that is, the pressure indicated by
each gage was assumed to represent the pressure acting
over a portion of the chord extending one-half the distance
to the next gage both forward and rearward. For example,
the fraction of the chord aasigned to the first gage was 3.75
percent and to the sixth gage was 10 percent. Some of the
implications of this method of integration will be discussed
in a subsequent section.

The angular displacement at the midspan position was
indicated by resistruwe-wire strain gages attached to a
torque rod running through the center of the hollow wing.
One end of the torque rod was fixed to the center of the
wing and the other end was &ed to the tunnel wall.

A schematic diagram of the instrumentation is shown in
figure 3. The magnitude of the vector repremntig the fun-
damental component of lift or moment and angular displace-
ment was indicated on an alternating-current vacuum-tube
voltmeter attached to the output of a variabldrequency,
narrow--peband Jilter. In essence, the filter performed
the function of a Fourier analysis in that both random com-
ponents and higher harmonics were removed from the signal.
In order to measure the phase angle between lift or moment
and the angular displacement, the output of the filter was
fed into a pulse-shaping circuit designed to convert the sinus-
oidal signals into pulses corresponding in time to the “cross-
over” points of the original signal. The pulses were then fed
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l?muzn 3.41chematio diagram of “instrumentation.

@to au electronic chronograph that accurakly indicated the
tie interval between the leading pulse which started the
chronograph and the lagging pulse which stopped it. Tbe
xatio of this time interval to the period of oscillation, when
~ultiplied by 360°, yields the phase angle in degrees. The
yeriod and frequency of oscillation were detmmined by start-
-ing and stopping the chronograph with the angulamdis-
ylacmmnt signal. In order to.minimize the effects of small
.dillemnces in components between the two circuits, a “taxe”
switch was provided which fed a single signal (the angular
dispkwmmnt) through both circuits. The remdting phase
~gle represented the phase shift introduced by the filters
and pulse-shaping circuits.

TEST CONDITIONS

The Ma&number of the tests was varied tim M=o.35 to
.M=O.7 and the Reynolds number was held constant at about
6X 10° by vsxying the density. The frequency of oscilla-
tion was varied horn Oto 60 cycles per second, and the mag-
nitude of angular displacement was about 1.2° except for

,some lift data at itl=O.71 which was obtained at an angular

displacement of about 2.4°.

DISCUSSION OF RESULTS “

The theory and calculation procedure and the experimental
technique discussed previously for the determination of the
~orces acting on a wing oscillating between walls have been

applied to a number of spetic examples. The investigation

has been divided into three parts: (1) A comparison is

made of analytical and experimental remdts obtained for

the .fift and moment on a pitching wing for several subsonic

Mach numbers, (2) theoretical results for the effecti of a

variation in Mach number at constant tunnel height are

given for a pitching wing and also for a wing undergoing

vertical translation, and (3) theoretical results for the effects

of a variation in the ratio of tunnel height to wing sernichord

are presented for particular values of Mach number.

COMPARISONOF TEEORY AND EXPERIMENT

In figure 4 a comparison is made of analytical and experi-

mental results for a wing oscillating in pitch about its mid-

chord. Figures 4 (a), 4 (b), 4 (c), and 4 (d) apply, respm-

tively, to Mach numbers of 0.35, 0.6, 0.6, and 0.7. The

results apply to a ratio of tunnel height to wing semi chord

Hof 7.60.

The plots on the lef~hand side of each figure show tho
magnitudes of the forces and moments as a function of the
frequency of oscillation, wher&s those on the right-hand
side show the corr~onding phase angles. The magnitudes
are presented as ordinates in the form of ratios l.L&’ I and
lMJilL’1. In thwe ratios, the quantities Z. rmd Ma me,
respectively, the lift for~e and the moment on a wing in o
tunnel; L=’ snd M.’ are the theoretical lift and the theoreti-
cal moment on a wing in free air. The effect of the tumml
walls appeam, therefore as a deviation from unity of the

ratios lLa/La’I and lM=/M=’I when La and .Ma are the theo-
retically derived forces and moments. When La and ill=
represent the experimental forces and moments, the devia-
tion from unity may not be completely attributed to the
effect of tunnel walls because such factora as airfoil thick-
ness and viscosity may cause deviation from the elementary
theory. The abscissa in the figures is the ratio of the fre-
quency of the pitching oscillation to a frequency calculated
for the rc90nant condition.

Excellent agreement between theory and experiment is
obtained for the phase anglca, in most cases, for both the
lift and the moment. Quantitatively, however, the agree-
ment between theory and experiment for the magnitudes
of the forces is not as good, although very similar trends
are demonstrated; in most cams, a systematic difference
appears. Some possible sources of the diiferencea between
theory and experiment are discussed in the following section.

Examination of figure 4 reveals that the theory predicted
the rwonant frequency very well. In all cases, the mini-
mum lift and moment %re found to lie very close to the
analytically indicated resommt frequency. Theoreticallyj
the lift and moment reduce to zero at the resonant condition,
Under actual conditions, such as finite tunnel length, trans-
mission of energy through the walls, nonlinearities at higher
amplitude, and turbulence in the flow that gives rise to
damping, pure resonance is unobhinable. However, it
may be seen by examining figure 4 (d) that the lift and
moment were reduced to 20 percent of the values away
horn resonance.

f
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EEMADKSONSOME DIFPEEENCm BETWEEN ~EORY m EI@EIUMEIW

In this section, some limitations and possible reasons for
diilerencw between theory and experiment are listed and
discusae&

In the comparison betwem theory and experinmnt shown
in iigure 4, an almost constant difference of 10 to 15 percent
between the magnitudes is to be noted, whereas the phase
angles are in good agreement. Of the several possible
reasons for these differences between theory and experinmnt,
perhaps the more important ones are airfoil thiclmcm,
Reynolds munber, finite tunnel length, transmission of
energy through walls, dissipation of the pressure waves due
to turbulence, and integration procedures. The eflect of
all thwe possibilities is not known for the oscillatory case.
In the steady-state case, however, it is lmown that the
effect of increasing thickncm is to inorease the slope of the
lift curve.

In the considerations of the analytical integration, a
collocation scheme was used to solve the integral equation.
In general, the three collocation points used were found to be
satisfactory as pointed out previously.

Twelve pressure cells were used for the experimental
integration of the forces. A stepwiee integration pro-
cedure was employed; that is, the pressure as record-
ed by the prcasure cell was multiplied by an area of
the wing over which it is assumed that the cell will give
an average prewure. This procedure gives good results
mcept possibly at the leading edge where the pressure varia-
tion is very great. Theoretkdly the pressure approaches

()
infinity at the leading edge as& and experimentally it is

found to be very large.

distribution of pressure

shown in the following

& a matter of fact, if a theoretical

rl—z asisassumedtobecot~ —
1+X

sketch and this curve is i&egrated

A%

in the
grated

10 -

8

4 -

2 7 +

o I
-1 0 I

x

same manner as the experimental curve was ink-

(that is, by calculating-the ordinate at the same
value of the abscissa at which the pressure cells were loeaimd

9

for the experiment), it is found that the area as determined
by the approximate method is 8 percent less than the area

as determined by integrating cot ~ in cIosed form. It is

apparent that the neglected area (shaded) ~ be appreciable.
b the actual experiment, in which a fairly thick aidoil mas
used, the neglected area would probably be mmller but
could perhaps contribute to the almost constant difference
in magnitudes of lift and moment between the theoretical
and experimental results. The effect of this integration
difference on the phase angles, which have been shown
to be in good agreement, would not be as pronounced.\

EFFECTOF A VARIATIONINMAOH~ER AT CONSTANT TUNNEL
HEIGHT

An an@ytid investigation has been made of the effects of a
variation in Mach number at constant tunnel height on the
forces on an oscillating wing. Some of the results of tie
previous section are employed together with results of
additional calculations. The magnitudes and associated
phase angles of both the lift force and the moment have been
determined for a pitching wing md also for a wing under-
going vertical translation. Calculations have been made
for a constant value of the heighkmichord ratio H of
7.60 and for Mach numbers of 0.3, 0.5, 0.7, and 0.8. Re-
sults of the calculations are shown in figures 5 and 6 for the
lift and in figures 7 and 8 for the moment.

The magnitudes of the forces and moments are presented,
ti in the previous section, in the form of ratios: lL&a’1,
l~~kf=’1, lG/~’[, and litf*/i%’l. The phase angles re-
lated h these ratios are presented as a difference between a
wing in a tunnel amd a wing in free air. The magnitudes
and phase angles are plotted against a frequency parameter
@/a, where u is the circular frequency of oscillation of the

wing, ~ k the height of the tunnel, and a is the veloci@ of
sound. At a particular value of the frequency parametar, a
progressively larger effect of the walls is in~&tad w the

Mach number increases. At all Mach numbers, the lift
is redueed to zero at the resonant frequency. The dip in
the curves against frequency ratio, which appears to be
characteristic of the low Mach number cases, gradually
disappeam as the Mach number k increased. As in the
ease of the magnitude of the lift, the effect of the walls on
the phase angle inoreases as the resommt frequency of the
tunnel is approached and &o as the Mach number is
increased.

The magnitude of the moment about the midohord is
shown in figures 7 and 8. The curves have the same shape
as the lift-ratio curves and again decrease to zero at the
resonant condition. The corresponding phase angles are
shown in these figures. Note that in figures 5 to 8 only
slight diflerenms appear between results for pitch and those
for translation.
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EFFECT OF VARIATION IN RATIO OF TUNNEL HEIGHTTOV?INGSEMI=OllD

The effect on the lif~force ratio and on the associated

phase angles of varying the ratio of tunnel height to wing

semichord is illustrated in figure 9. The results presented

in figures 7 and 8 have been based on the consideration of a

distribution of pressure doublets over the chord of the airfoil

and on satisfying the dowmvash condition at three chordwise

stations. Results for figure 9 have been obtained by the

simplified procedure of concentrating the loading in a single

doublet at the quarter chord and satidying the dowmvash

condition at the three-qtuwter chord. This approach gives

fairly good agreement with the results of the more elaborate

procedure except near the resonsmt frequency.

Calculations have again been made for an sirfoil oscillating

in pitch about its midchord for values of the heigh&semi-

chord ratio H of 7.60, 16, and 32 at M=o.3 and 0.8. In
figure 9 (a) the lift ratio lLJLa’1 is plotted against the re-
duced-frequency parameter k=bco/U. Plots for both Mach
numbers are made to the same scale for ease of comparison.
It is again apparent that the effect of reducing the Mach
number is to reduce the effect of the tunnel walls and to
raise the value of the critical frequency at which re-sonsmce
can occur for a given tunnel. For ~ample, for H=7.60,
at i14=0.8, the critical value of k is 0.30, whereas for M= 0.3,

the critical value of k is increased to 1.31. Also, as was to
be expected, increasing the height of the tunnel has a mmkod

effect in reducing the influence of the tunnel walls for mosti

of the frequency range. However, the critical frequency
is reduced for increased tunnel height so that in tho large
tunnel the range of k below the fundamental resonanco
becom~ smaller. This reduction in frequency would mom
to be a disadvantage of the larger tunnels. However, tho

second branch of the curve for H= 32 at M= 0.3 shows that,
for frequencies between the first and second resonant points,
the effect of the walls on the magnitude of the lift is no
greater than for frequencies below first resonance. Noto
also that the approach to resommce is quite abrupt; con-
sequently, only a small range of frequencies very close to
resonance would be critical and tests could then be conducted
between the critical frequencies.

In il.gure9 (b) the phsse angles, associated with the results
of @e 9 (a), for both the wing in a tunnel and for a wing
in free air are shown ss a function of reduced-frequency
parameter k for values of heigh~semichord ratio H of 7,60,
16, and 32 at M=o.3 and 0.8.

At M=O.3, the effectiof walls on the phsse angle is genm-
ally very small; at M=o.8, the effect is small at low fre-
quencies but increases greatly as the critical value of k is

[.4 I
/W=0.8

/ 7 \

w= 0.3

1.2 I

— /=

\ \ I
~.

/y /’1 ‘~ ‘
10 ‘ ‘–– ~\T–- ‘--’ ., 1 I

I
I \ I ‘

r I

1’ ~

1
I

.8 \ I
1
I I I
I

I
‘IY=16

: H=32
I I

H=16 I H= 7.60 I

I 1“
.6

--5-H=32

4 I
I

1 I / H= 7.60
1

! I I
I !

I
I

.4 L , I

I
I ,

B I
I

II
I
I I

.2
~ ! I

I.,
1 I I

(a) I I
I

I
I

o .2 .4 .6 .8 1.0 12 1.4 0 .2 4

Reckwl-fmquency pammeter, k= $#

(a) Magnitude of lift.

FrGH 9.—l3lTect of a variation in tunnel height on the lift of a pitcling wing for M=O.3 and M=O.8.



TUNNEL-WAIIL 3WFEr31% IN TWO-DIMENSIONAIJ UNSTEADY SU8SONIC FLOW 243

40 I —
I I I 1 1 1 I I J

IW=O.8, H= 7.60 M= Q8, H= !6 IU=Oi3, Ii= 32

0
\

K ~ < .
\ b SJ

--- -
-. __

k- --- . . . . _ Y
--- __ _

1 -

Y N

-40 > ,
I

}

\ \
t

-80

g
.

+$” -1200 1
9-

2 3 40 @l c% 12 .16 0 .02 .04 .06
Reduced -frequency parameter, k = &

.08

120’

~

I I I I I I I I I
M=O.3,H= 750 M=O.3,H=16 M=03, H= 32

I I
k,resano rice--- -

I I I

80
—Theory, with walls I

––––llecyy, free air

//
40

I
/ I

●

/ // -
& “’

/ ‘
I

/ 9 t /0-
.N

0 <. ~//-
-. ._. ~ -

-40

(b)

0 .4 .8 12 L60 .2 .4 6 .8 0 .2 .4 .6 .8

Reduced-frequency parameter, k = ~

(h) Phase angle of the lift.

FIGURE9.—Conoluded.

approached. As the resonant frequency is approached,
results at both Mach numbers show that the phase angle
increasea in negative value and appears to approach-90°.
As the resonant condition is exceeded, there is a sudden shift
in phaxe angle. This change is similar to that found for the
oscillation of a simple undamped spring-masa system where
an abrupt change in phase angle of 180° is found aa the
resonant frequency is exceeded. Because of the complexity
of the kernel, which involves an infinite series of HankeJ
functions, the phase angle at resonance has not been
determined.

In figure 10, the plot from figure 9 (a) for 34=0.3 and
H=7.(3o is compared with some results of Reismmr (ref. 2)
for the effect of walls on the lift-force ratio in incompressible
flow. This curve for M=O significantly duplicates the rather
large wall effect at low values of k which is noted for the

31=0.3 result, (At low values of k, the curves for the two
dMerent Mach numbers are almost coincident probably be-
cause of the fact that the slightly lower height semichord
ratio H= 6.28 used by Reissner counteracts the effect of de-
cream in Mach number.) For values of k greater than 0.5,
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FIGURE 10.—Comparison of lift ratio for M=O and .ii=O.3.
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the curves for the two Mach numbers separate; the lift-force

ratio at M=O approached unity and exhibits no eilects of

resonance because the resonant phenomenon ties only from

the effects of compressibility.

CONCLUDING REMARKS

This report hss dealt with the problem of an airfoil oscil-
lating between plane walls in subsonic compressible flow. It
ccmstitutea a continuation of the work initiated in NACA
Report 1150 in that a method of solving the integral equation
is presented and some experimental results are cmmpared
with theory.

The comparison between theory and experiment for the
phase angles between lift force or moment and position is
shown to be very good, whereas the comparison between
theory and experiment for the magnitudes of the lift and
moment is not as good; however, the trends are all accuratdy
predicted. In all casea the resonant frequency was accu-
rately predicted. The cause of the apparent discrepancy be-
tween the theoretical and experimental lift and moment may
be attributed to several factma such as dkipation of the
pressure waves due b turbulence of the air flow and trans-
mission of the energy through the tunnel -walk In addition,

the theoretical work was baaed on the concept of a very thin

wing at i.nlinite Reynolds number, whereas the experiments

were made with a 10-percent-thick wing at a Reynolds num-

ber of approximately 5 X 10’. The effect of thickness and

Reynolds number have not, aa yet, been delineated for the

oscillating case.

& would be expected, it is shown theoretically that the

larger the tunnel the leas the effect of the walls. The critical

frequency, however, is also reduced as the tunnel height is in-

cressed, but it is shown that tests may be made above the

resonant frequency with no larger tunnel-wall effect than

is found below the resonance. Jn addition, the range of
influence of the remnant region is greatly reduced so that

only a small range of frequencies need be avoided. Wall

effects are shown theoretically to be more pronounced as the

Mach number is increased and at high Mach numbers am

found to be large even at frequencies well removed from

resonance.

LANGLRY AJ3R0NA~cAL LA130RAT0Ry,
NATIONAL kOVISORY Comrmrm FOR kDRONAUTICS,

LANGLnY l?mLD, VA., January 1,2, 196.5.



APPENDIX

REDUCITON OF INTEGRAL EQUATION TO THE CASE OF ZERO FREQUENCY

In this appendix, the integral equation for the dowmvaah
for a wing oscillating in a compressible medium in the pres-
ence of wind-tunnel walk is reduced to the zero-frequency
condition.

If equation (1) of the text is written a9

and the limit taken as HO, it will be found that all the
termz of uK(M,z) and @(M,z)H) vanish except tmrusinvolv-
ing Hl@o These terms become infinite; however, as a+O,
the asymptotic expansion for very small values of the
argument may be used. Therefore,

and

The vertical induced velocity may then be written as

or

0W(x)= -g= _,‘ z(q) 1 +
.& (x–a)

‘n- (z—q)

25J(–v’ # (Q;
1

da (A3)
~H, +n’@

Equation (A3) may be written as

The additional induced velocity due to the presence of
tunnel wrd.lzfor the steady-state case in comprwible flow
is given by equation (40) of reference 13. Equation (A2)

can be reduced to tbe same form by making the approxima-
tion that the airfoil chord k small compared with the tunnel
height.
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